זליגת זכרון היא אחד הבאגים החמקמקים ביותר, ממש הרוצח השקט של תוכנות מחשב.
לא משנה באיזה שפה אתם כותבים, לא קשה במיוחד לכתוב קוד שידלוף כמסננת (אם כי זליגות זכרון בשפות מנוהלות כמו ג'אווה ו#C הן בעלות מאפיינים שונים לגמרי מזליגות זכרון בשפות בהן המתכנת אחראי על ניהול הזכרון ואין איסוף זבל אוטומטי).
כל משתמש מנוסה מכיר את התופעה המציקה, שתוכנה עובדת מהר בהתחלה ואחרי פרק זמן לא קבוע היא מתחילה להאט ולהאט עד כדי זחילה.
לפעמים היא מצליחה להאט את כל המחשב על הדרך, אם היא זולגת כמויות זכרון שגורמות למחשב להתחיל להשתמש בצורה מופרזת בקובץ הSWAP.
בניגוד להרבה בעיות תכנות אחרות, המתכנת לא מקבל אזהרה או שגיאה כאשר הוא כותב באג של זליגת זכרון, התוכנה לא קורסת מייד כמו למשל בגישה לזכרון דרך מצביע לNULL בC או בC++, והקומפיילר לא יספר למתכנת על הטעות שהוא עשה.
הסיבה לכך היא לא שמפתחי הקומפיילרים הם עצלים מכדי לכתוב קוד שמוצא את הבעיה – אלא שפשוט לא ניתן לכתוב קוד שיזהה זליגת זכרון בכל המקרים בצורה סטטית (על בסיס הקוד הכתוב בלבד).
הדוגמא הפשוטה ביותר היא תוכנית שמקצה ומשחררת זכרון על פי בקשת המשתמש (לאו דווקא במונחים האלו, המשתמש יכול לבקש לפתוח קובץ ובתגובה התוכנה תקצה זכרון בגודל הקובץ ותטען את הקובץ פנימה). אם התוכנה עובדת ישירות עם הזכרון אז הקומפיילר לא יכול להבטיח שהזכרון שיוקצה בשלב מסויים גם ישוחרר – ולו כי זה יקרה רק אם המשתמש יבקש את זה.
אז מה הבעיה עם זליגת זכרון?
הבעיה הראשונה והטריויאלית ביותר היא שתוכנה שזולגת משתמשת ביותר זכרון ממה שהיא צריכה, והמצב מחמיר בהדרגה ככל שאותו קוד שזולג רץ יותר. תוכנה שצורכת יותר מדי זכרון היא לא בהכרח בעיה חמורה. למעשה – כמעט כל תוכנה ברמת מורכבות בינונית ומעלה שנכתבה בשפת C או C++ זולגת זכרון כאילו אין מחר, ובדרך כלל זה לא גורם בעיות כי המשתמש סוגר את התוכנה לפני שהיא מגיע למצב של חוסר זכרון.
הבעיה הזו היא קצת יותר חמור משנדמה במבט ראשון:
כאשר המתכנת מבקש להקצות זכרון, נניח 1MB, הוא מצפה לקבל 1MB של זכרון רציף, שאפשר לעבור עליו בלולאה אחת מתחילתו ועד סופו.
דמיינו מערכת עם 2 מגה זכרון שעומדים לרשות תוכנה שרצה שם, מספיק לכאורה להקצות 2 בלוקים של 1MB.
עכשיו, אם נקצה סך הכל של 1K זכרון, ניתן להניח שנוכל להקצות עוד 1999K ובוודאי שנוכל להקצות 1MB, נכון?
אז זהו – שלא בדיוק : אם נקצה את ה1K בארבע בלוקים של 250 בתים, ובהפרשים של כ500K, למעשה נמנע מהתוכנה אפשרות לקבל זכרון רציף של יותר מכ500K.
כלומר, למרות שהזכרון הפנוי מספיק – בפועל הזכרון הפנוי שבור לחתיכות קטנות מדי (Fragmented), ואין לנו יכולת להקצות את הזכרון הדרוש.
מכאן אפשר להסיק שגם דליפת זכרון קטנה עלולה במצבים מסויימים לגרום לחוסר זכרון קריטי.
אני מקווה שזה שיכנע אתכם שדליפת זכרון זה דבר רע שראוי לטפל בו.
כל מתכנת מתחיל יודע שלשפות מודרניות יש איסוף זבל אוטומטי שאמור למנוע זליגת זכרון.
יש פה כמה בעיות, קודם כל – למרות שלרוב השפות יש איסוף זבל אוטומטי, ברוב המקרים מדובר בזבל של איסוף זבל, ואם להיות פחות ציורי ויותר ספציפי – מדובר בקוד איטי ודי מוגבל, שלא תופס את כל המקרים.
אבל אם נסתכל בג'אווה וב#C (שאני מניח שיש לה איסוף זבל בקליבר דומה לזה של ג'אווה) – הן בהחלט מסוגלות לאסוף את הזבל במהירות וביעילות.
הבעיה היא שההגדרה של זבל הוא אובייקט שהוקצה ואין אליו התייחסות משום מקום (Reference), ולפעמים המתכנת לא מבחין שבעצם יש אליו התייחסות.
למשל, קוד הג'אווה הטריואלי הבא ירוץ עד שיעוף עקב חוסר זכרון:
[code lang="java"]
import java.util.HashSet;
import java.util.Set;
public class a {
public static void main(String[] args) {
Set
int a = 0;
while(true)
s.add(String.valueOf(a++));
}
}
[/code]
די ברור למה.
זו הכוונה בדליפת זכרון בשפות עם איסוף זבל אוטומטי. הבעיה היא שבדרך כלל הרבה יותר קשה מזה לראות את הבעיה.
בשפות עם ניהול זכרון ישיר יש מגוון רחב בהרבה של שגיאות שקשורות לזכרון, החל מזכרון שמוקצה ולא משוחרר, זכרון שמשוחרר פעמיים, זכרון שמוקצה עם Malloc של C ומשוחרר עם delete של C++, כתיבה או קריאה אל מחוץ לגבולות הזכרון שהוקצה ועוד ועוד.
הנה תוכנית C++ קטנה שמדגימה חלק מהשגיאות האפשריות:
[code lang="c++"]
#include
char* get1(){
return new char[10];
}
char* get2(){
return (char*)malloc(sizeof(char)*10);
}
char* get3(){
static char c[10];
return c;
}
int main() {
char *s1 = get1();
char *s2 = get2();
char *s3 = get3();
s1[11] = 'x'; // out of bounds access. mistake
free(s1); // mistake, should be delete[]
delete s2; // mistake should be free
delete s3; // mistake, should not be freed or deleted
char *s4 = new char[10];
delete s4; // mistake, should delete with delete[] and not with delete.
delete s4; // mistake, deleted twice.
char *s5 = new char[10]; // mistake, never deleted
return 0;
}
[/code]
כמו תמיד, C++ נותנת הרבה יותר חבל למתכנת התמים שרוצה לתלות את אח של אח שלו על עץ.
למעשה רק השגיאה האחרונה היא ממש זליגת זכרון, אבל כל השגיאות נפוצות וקשורות לזכרון.
יש טכניקות ידועות ומקובלות שמקטינות מאוד את הסבירות לטעויות שקשורות להקצאה ושחרור זכרון, ספציפית יש טכניקה שמוזכרת בספר The C++ programming language של סטראוסטרופ שנקראת Resource Acquisition Is Initialization או RAII בקיצור.
RAII הוא נושא שראוי לפוסט שלם בפני עצמו, אבל הנה דוגמת שימוש פשוטה (מדי, יש בה לא מעט חורים):
[code lang="c++"]
void direct_test(){
char *buffer = new char[100];
try{
work(buffer);
delete[] buffer;
}
catch(…){
delete[] buffer;
throw;
}
}
[/code]
הקוד למעלה מקצה זכרון, וקורא לפונקציה שעובדת עליו. לבסוף הוא משחרר את הזכרון וגם דואג שהוא ישוחרר כראוי אם הפונקציה תזרוק אקספשן.
התבנית הזו של טיפול ידני בשגיאות היא מאוד בעייתית ומועדת לטעויות.
אם היינו משתמשים בRAII, יכלנו להגדיר מחלקה בשם Buffer, שתדאג לשחרור ולהקצאה:
[code lang="c++"]
class Buffer{
char *buffer;
size_t size;
public:
Buffer(int size){
buffer = new char[size];
}
~Buffer(){
delete[] buffer;
}
char *get() {return buffer;}
};
void raii_test(){
Buffer buffer(100); // 100 bytes allocated in constructor
work(buffer.get());
// automatically freed when buffer destructor is called (will be called even if an exception is thrown).
}
[/code]
אפשר לראות שהקוד שמשתמש בזכרון הוא הרבה יותר פשוט עכשיו.
מצד שני, יש מספר לא מבוטל של באגים בדוגמא הזו (למשל, כשמעתיקים את buffer הזכרון שהוקצה ישוחרר פעמיים). כדי שזה באמת יעבוד צריך לדאוג לבנאי העתקה, אופרטור הצבה וכו'.
כל מתכנת C++ רציני חייב להכיר את הטכניקה הזו, שתחסוך לו שערות לבנות רבות מאוד.
אבל לפעמים אין ברירה וחייבים להשתמש בזכרון ישירות, בדרך כלל כאשר עובדים עם ספריות שכתובות ככה-ככה, או עם קוד אחר שנכתב על ידי מישהו שעדיין לא ראה את האור.
עוד דבר – בC לא אין אפשרות אמיתית להשתמש בRAII כי השפה לא מספיק עשירה, ולכן מתכנתים שכותבים בC אמיתי (ולא C+) לא יכולים להנות מהטכניקה הזו.
אחד הכלים החזקים ביותר לזיהוי בעיות שקשורות לעבודה עם זכרון הוא valgrind.
ואלגרינד הוא למעשה קבוצה של כלים, כשהידוע בהם הוא memcheck שבמגלה שגיאות בעבודה עם זכרון.
הוא כולל כלים אחרים לניתוח ביצועים (cachegrind, callgrind) ועוד.
ואלגרינד עובד על רוב מערכות ההפעלה ממשפחת היוניקסים (BSD, Linux, MacOS X וכו'), בתאוריה אפשר לבדוק איתו תוכנות חלונות דרך WINE.
ואלגרינד עובד בשורת הפקודה, מה שמרתיע משתמשים רבים. לאחרונה חיפשתי ומצאתי פתרון שמאפשר אינטגרציה של ולגרינד עם CDT:
התמיכה היא כחלק מפרוייקט בשם LinuxTools שמפותח על ידי RedHat (כנראה).
יש פה דמו וידאו של השימוש בפלאגין.
קובץ הוידאו נמצא כאן למי שלא מצליח לראות אותו בבלוג (דורש פיירפוקס 3.5 או דפדפן שתומך בתג וידאו).
כדי למצוא זליגות זכרון בג'אווה, אני משתמש בJProfiler. למרות שהוא מסחרי – הוא מומלץ מאוד למפתחי ג'אווה (אפשר להוריד גרסאת נסיון לשבועיים כמדומני, ובתום השבועיים להוריד אותה שוב..).
JProfiler הוא כלי מאוד עשיר שמאפשר ניתוח ביצועים, זכרון, ביצועי סינכרון ת'רדים ועוד.
שווה להסתכל על סרטוני הוידאו לפני שמשתמשים בו, כדי להפיק ממנו את מירב התועלת.